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In this Communication, we report the electron-facilitated Cope <1t
cyclization of 2,5-dicyano-1,5-hexadierigleq 1). Although charge- x I+ X
promoted reactions such as the cationic Digldder reactior and S w > —
the oxy-accelerated Cope rearrangerhang well known, few ex- 1 _ X .
amples of electron-induced pericyclic reactions have been reported, X T
and those that have been are typically electrocyclfcand cyclo- ~
additiort>8 reactions. Previous examples of sigmatropic rearrange- T -e”
ments of radical anions have been propo$duit it has been sug-

gested that they may arise from dianionic states, and not the radical 24
anions?° X
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The Cope rearrangement is an example of a reaction that can be P x1 N
X X

promoted by oxidatioA' 24 Simple ionization energy estimates
predict that the radical cation Cope rearrangement should have an
“inverted” potential energy surfagéwherein the cyclic geometry
that corresponds to the transition state for reaction of the neutral
diene is an intermediate (Figure 1). Thus, matrix isolated 1,5-

hexadiene radical cation generated by pulse radiolysis spontaneouslypuch as condensation with @and C$.3'~3 However, unlike what
cyclizes to the cyclohexane-1,4-diyl radical cati¢ Conse- is found with carboxylates formed from closed-shell ions, such as

quently, Ikeda et &7 have used photoinduced electron transfer to deprotonated cyclohexanecarbonit8lehe CQ adduct of2 reacts
afford the cyclization of a phenyl-substituted hexadiene deriva- With open-shell reagents NO and h®y addition. Sequential

Figure 1. Potential energy surfaces of a neutral, cationic<XH), and
anionic (X= CN) Cope rearrangement of 1,5-hexadienes.

tive. N
Recently reported electronic structure calculations predict that, N o =
in select cases, single electron reduction can also catalyze the N | N
Cope rearrangement because the electron affinity of the open- © /=/ / ~
shell transition state is much greater than that of the closed- CN =
shell hexadiene (Figure 2j.For example, cyclization of the radi- o
3 4 5 6

cal anion of 2,5-dicyano-1,5-hexadienga( eq 1) to form the
corresponding cyclohexane-1,4-diyl radical aniinis calculated

to be exothermic by 16.2 kcal/mol (B3LYP/6-85G*).28 In this
work, we provide experimental evidence thatoes indeed cyclize
upon reduction in the gas phase, confirming the theoretical

addition of CQ and NO or NQ has been observed previously for
distonic ions such as, m+, p-benzyne®®37andm-xylylene ions?6-37
Radical anions of closed-shell molecules such as fumarondtrile
and more highly substituted cyanoethylenes are not found to form

predictions. _ _ adducts with C@or CS, suggesting tha2 is not the acrylonitrile-
Addition of neutral 2,5-dicyano-1,5-hexadiene 10 cm downstream |ike radical anion2a. Attempts to generate the radical anions of
of the electron emission filament in a flowing afterglewiple acrylonitrile5 and 2,6-dicyano-1,6-heptadiereywere unsuccessful,

quadrupole apparattfs®® (operating at room temperature with 0.4 providing additional evidence againgg as a stable structure.

Torr of helium buffer gas flowing at a rate of 200 STP¥sjiresults Moreover, the fact thaé does not form a stable negative ion is

in the formation of molecular anidh(m/z 132) by thermal electron  evidence that the formation @fis not accompanied by rearrange-

capture. ment involving hydrogen or cyano-group shifts, which should be
The structure o was established by using chemical reactivity. equally likely to occur for six- or seven-carbon systems. The lack

lon 2 is found to undergo reactions common to organic anions, of rearrangement is not surprising because the calculated energy
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